Home
Class 12
MATHS
cos^(2)xdy + ye^(tanx) dx = 0...

`cos^(2)xdy + ye^(tanx) dx = 0 `

Text Solution

Verified by Experts

The correct Answer is:
`logy + e^(tan x ) = c`
Promotional Banner

Topper's Solved these Questions

  • ORDINARY DIFFERENTIAL EQUATIONS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the Correct Answer)|38 Videos
  • MODEL QUESTION PAPER -1

    PREMIERS PUBLISHERS|Exercise Part -IV|20 Videos
  • PROBABILITY DISTRIBUTIONS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|40 Videos

Similar Questions

Explore conceptually related problems

The solution of sec^(2)x tany dx+sec^(2)y tanx dy=0 is

The solution of y dx-xdy+3x^2 y^2 e^(x^3) dx = 0 is

For each of the differential equations given in cos^(2)x(dy)/(dx)+y=tanx(0 le x lt (pi)/(2))

If f(x) = int2e^(x) cos^(2)x(-tan^(2)x+tanx+1)dx and f(x) passes through (pi, 0) then (f(0)+f^(')(0)) equals

Ecaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

Evaluate: intcos2x" ln "(1+tanx)dx

Evaluate the following : int_(0)^((pi)/(2)) ( e^(-tanx))/( cos^(6)x)dx

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)