Home
Class 11
MATHS
Let a=3^(1/(223))+1 and for all geq3,l e...

Let `a=3^(1/(223))+1` and for all `geq3,l e tf(n)=^n C_0dota^(n-1)-^n C_1dota^(n-2)+^n C_2dota^(n-3)-+(-1)^(n-1)dot^n C_(n-1)dota^0` . If the value of `f(2007)+f(2008)=3^k w h e r ek in N ,` then the value of `k` is.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a=3(1)/(233)+1 and for all n>=3 let f(n)=C(n,0)a^(n-1)-C(n,1)*a^(n-2)-C(n,2)a^(n-3)-...+(-1)^(n-1)*C(n,n-1) If the value of f(2007)+f(2008)=3^(k) where k in N then the value of k is

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

The value of .^(n)C_(0).^(n)C_(n)+.^(n)C_(1).^(n)C_(n-1)+...+.^(n)C_(n).^(n)C_(0) is