Home
Class 9
MATHS
Given that (1^2 + 2^2 + 3^2 + ..... + 10...

Given that `(1^2 + 2^2 + 3^2 + ..... + 10^2) = 385,` the value of `(2^2 +4^2 + 6^2 + ..... + 20^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that 1^(2) + 2^(2) + 3^(2) + ... + 20^(2) = 2870 , the value of (2^(2) + 4^(2) + 6^(2) + ... + 40^(2)) is :

Find the value of 1^2 + 2^2 + 3^2+.......+10^2

The value of 1^(2) - 2^(2) + 3^(2) - 4^(2) + ….. + 11^(2) is equal to

(1^(2) + 2^(2) + 3^(2) + …. + 10^(2)) is equal to

The value of (1^2 - 2^2 + 3^2 - 4^2 +5^2 -6^2 +.....+ 9^2 - 10^2) is

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

1^2+2^2+3^2+4^4+...........10^2 =?