Home
Class 11
MATHS
Prove that sum(r=1)^k(-3)^(r-1)^(3n)C(2r...

Prove that `sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2` and`n` is an even integer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(k)(-3)^(r-1)3nC_(2r-1)=0, where k=(3n/2 and n is an even integer

Prove that sum_(r=1)^(k)(-3)^(r-1)C(3n,2r-1)=0 where k=(3n)/(2) and n is an even positive integer.

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

The value of sum_(r=0)^(3n-1)(-1)^(r)6nC_(2r+1)3^(r) is

If sum_(r=1)^(n)r^(3)((C(n,r))/(C(n,r-1)))=14^(2) then n=

Prove that (3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+3C_(r)))

sum_(r=1)^(n)r(r+1)=((n+a)(n+b)(n+c))/(3) then