Home
Class 10
MATHS
If A,B,C are the angles of a Delta ABC, ...

If A,B,C are the angles of a `Delta ABC`, prove that `tan ((C+A)/(2))=cot (B)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that tan((A+B)/(2))=cot((c)/(2))

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

In a Delta ABC prove that (tan(A+B))/(2)=(cot C)/(2)

If A, B, C are interior angles of triangle ABC, prove that :- tan((A+B)/2)=cot "C/2 .

If A,B,C are the interior angles of a triangle ABC, prove that (tan(B+C))/(2)=(cot A)/(2)

If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"(A)/(2) .

In triangle ABC prove that tan((A+B)/2)=cot. C/2

In a ∆ ABC prove that tan( (A+B)/2) = cot( C/2) .

In triangle ABC, prove that tan(B+C)/2=cot(A/2)

In any Delta ABC, prove that :tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))