Home
Class 12
MATHS
costheta=(cosalpha-cosbeta)/(1-cosalpha*...

`costheta=(cosalpha-cosbeta)/(1-cosalpha*cosbeta) => tan^2 (theta/2) tan^2(beta/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) , then the values of tan(theta/2) is

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

If costheta=(cosalpha-cosbeta)/(1-cosalpha.cosbeta) , prove that t a ntheta/2=+-tanalpha/2cotbeta/2 .

If costheta=(cosalpha+cosbeta)/(1+cosalphacosbeta),\ prove that tantheta/2=+-tanalpha/2tanbeta/2

If costheta=(cosalpha+cosbeta)/(1+cosalphacosbeta),\ prove that tantheta/2=\ =-tanalpha/2tanbeta/2

Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(-1)(tan (alpha/2) tan (beta/2))

Prove that : cos^(-1)((cosalpha+cosbeta)/(1+cosalphacosbeta))=2\ tan^(-1)(tanalpha/2tanbeta/2)

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

If cos theta=(cosalpha-cos beta)/(1-cosalpha cos beta) , then one of the vlaues of tan((theta)/(2)) is

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) . prove that one of the value of "tan"(theta)/(2) is "tan"(alpha)/(2)"cot"(beta)/(2) .