Home
Class 12
MATHS
A+B+C = 2S => sinS+sin(S - A)+sin(S-B)- ...

`A+B+C = 2S => sinS+sin(S - A)+sin(S-B)- sin(S-C)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 2S then sin (SA) + sin (SB) + sin (SC) -sin S =

A+B + C = 2S implies sin S + sin (S -A) + sin (S - B) - sin (S - C) =

If A+B+C= 2S , " then " sin (S-A) sin(S-B) + sinS sin(S-C)=

If A + B + C = 2S then sin (SA) sin (SB) + sin S sin (SC) =

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A+B +C =2S, prove that : sin (S - A) + sin (S- B) + sin (S-C)-sinS= 4 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

If A+B+C=2S, " then " sin^(2)S-sin^(2)(S-A)+sin^(2)(S-B)-sin^(2)(S-C)=

If A+B+C = 2S , then prove that sin(S-A)+sin(S-B)+sinC = 4 cos ((S-A)/2) cos ((S-B)/2) sin C/2 .