Home
Class 11
MATHS
Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^...

Prove that `(3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^n(-1)^r*(""^nC_r)/(""^(r+3)C_r)

sum_(r=2)^(n)(5r-3)C_(r)=

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

Prove that sum_(r=0)^(n)3^(rn)C_(r)=4^(n)

Prove that sum_(r=1)^(n)(-1)^(r-1)(1+(1)/(2)+(1)/(3)+...+(1)/(r))^(n)C_(r)=(1)/(n)

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).