Home
Class 11
PHYSICS
Find the relative error in Z, if Z=A^(4)...

Find the relative error in Z, if `Z=A^(4)B^(1//3)//CD^(3//2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the relative error in x, if x = a^4b^(1//3) // cd^(3//2

Find the relative error in x, if x - a^4 b^(1//3// cd^3//2

If Z=(A^(4)B^(1/3))/(CD^(3/2)) ,than relative error in Z (Delta Z)/(Z) is equal to (a) ((Delta A)/(A))^(4)+((Delta B)/(B))^(1/3)-((Delta C)/(C))-((Delta D)/(D))^(3/2) (b) 4((Delta A)/(A))+((1)/(3))((Delta B)/(B))+((Delta C)/(C))+((3)/(2))((Delta D)/(D)) (c) 4((Delta A)/(A))+(1)/(3)((Delta B)/(B))-((Delta C)/(C))-((3)/(2))((Delta D)/(D)) (d) ((Delta A)/(A))^(4)+(1)/(3)((Delta B)/(B))+((Delta C)/(C))+(3)/(2)((Delta D)/(D))

Given Z = (A^(4)b^(1//3))/(CD^(3//2)) where A,B,C and D are physical quantity. What will be the maximum percentage error in Z.

Given Z = (A^4B^(1//3))/(CD^(3//2)) where A, B, C & D are physical quantity. What will be the maximum -percentage error in Z?

If z_(1) = 2 + 5i, z_(2) = -3 -4i, and z_(3) = 1 + I, find the additive and multiplicative inverse of z_(1),z_(2)and z_(3) .

For physical quantity z, given by expression z=(gh^(1"/"2)I)/(mx^3) , write the expression for relative error in it.

find z . 5-2((z-4)/3) =1/2(2z +3)

Find the principal value of the arguments of z_(1)=2+2i,z_(2)=-3+3i,z_(3)=-4-4iand z_(4)=5-5i,where i=sqrt(-1).

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=0 then the area of the triangle whose vertices are z_(1),z_(2),z_(3) is 3sqrt(3)/4b.sqrt(3)/4c.1d.2