Home
Class 11
MATHS
The expression (sqrt(2x^2+1)+sqrt(2x^2-1...

The expression `(sqrt(2x^2+1)+sqrt(2x^2-1))^6+(2/((sqrt(2x^2+1)+sqrt(2x^2-1))^))^6` is polynomial of degree `6` b. `8` c. `10` d. `12`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

Express: ((x+sqrt(x^2+1))^6+ (x-sqrt(x^2+1))^6) as a polynomial in x

The expression (sqrt(x^(3)-1)+x^(2))^(11)-(sqrt(x^(3)-1)-x^(2))^(11) is a polynomial of degree

Solve (sqrt2+1)^x +(sqrt2-1)^x = 6 .

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

(x+sqrt(x^(2)-1))^(6)+(x-sqrt(x^(2)-1))^(6)

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=

Degree of the polynomial [sqrt(x^(2)+1)+sqrt(x^(2)-1)]^(8)+[(2)/(sqrt(x^(2)+1)+sqrt(x^(2)-1))]^(8) is.