Home
Class 11
MATHS
The coefficient of x^r[0lt=rlt=(n-1)] in...

The coefficient of `x^r[0lt=rlt=(n-1)]` in lthe expansion of `(x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^2++(x+2)^(n-1)` is `^n C_r(3^r-2^n)` b. `^n C_r(3^(n-r)-2^(n-r))` c. `^n C_r(3^r+2^(n-r))` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Coefficient of x^25 in the expansion of the expression sum_(r = 0)^50 ""^50C_r (2x - 3)^r (2-x)^(n-r) is :

If n is an even natural number and coefficient of x^(r) in the expansion of ((1+x)^(n))/(1-x) is 2^(n) then (A) r>((n)/(2))(B)r>=((n-2)/(2))(C)r =n

If (1-x^(2))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(2n-r), then a_(r) is equal to ^(n)C_(r) b.^(n)C_(r)3^(r) c.^(2n)C_(r) d.^(n)C_(r)2^(r)

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)

sum_(r=0)^(n)((n-3r+1)^(n)C_(r))/((n-r+1)2^(r)) is equal to

If sum_(r=0)^(n)(r)/(nC_(r))=sum_(r=0)^(n)(n^(2)-3n+3)/(2*^(n)C_(r)), then n=1 b.n=2c.n=3d .none of these

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .