Home
Class 11
MATHS
If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N...

If `(1+x)^n=C_0+C_1x+C2x2++C_n x^n , n in N ,t h e nC_0-C_1+C_2-+(-1)^(n-1)C_(m-1),` is equal to `(mltn)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1 x + C_2x^2 + …………+C_n x^n , find the value of C_0 - 2C_1 + 3C_2 - ……….+ (-1)^n (n+1) C_n

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n ,t h e nC_0-(C_0+C_1+)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+(-1)^(n-1)(C_0+C_1+ C_(n-1)),w h e r en is even integer is a positive value a negative value divisible by2^(n-1) divisible by2^n

If (1+x)^n=C_0+C_1x+C_2x^2+_____+C_nx^n , prove that C_1+2C_2+3C_3+_____+ ^nC_n=n2^(n-1)

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)