Home
Class 11
MATHS
Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^...

Let `(1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^kdotIfa_1,a_2a n d a_3` are in arithmetic progression, then the possible value/values of `n` is/are a. 5 b. 4 c. `3` d. `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (1+x^2^2)^2(1+x)^n = sum _(k=0)^(n+4)a_k x^k. If a_1,a_2,a_3 are in rithmetic progression find n.

Let (1+x^(2))^(2)*(1+x)^(n)=sum_(k=0)^(n+4)a_(k)*x^(k) If a_(1),a_(2) and a_(3) are iun AP, find n.

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to

Consider 1,2,3,..., be sequence of positive integers in arithmetic progression. S(n) denotes sum of first n terms of arithmetic progression. If S(n+4) is divisible by S(n), then number of all possible value(s) of n is : (A) 1 (B) 2 (C) 3 (D) More than 3

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If for n in I,n>10;1+(1+x)+(1+x)^(2)++(1+x)^(n)=sum_(k=0)^(n)a_(k)*x^(k),x!=0 then