Home
Class 12
MATHS
xy+yz+zx=1=>x/(1+x^2)+y/(1+y^2)+z/(1+z^2...

`xy+yz+zx=1=>x/(1+x^2)+y/(1+y^2)+z/(1+z^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= (4xyz)/((1-x^(2))(1-y^(2)) (1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))

If xy + yz + zx = 1 , prove that : x/(1-x^2)+y/(1-y^2)+z/(1-z^2)= (4xyz)/((1-x^2)(1-y^2)(1-z^2)) .

If xy+yz+zx=1, " then " (x)/( 1+x^(2))+(y)/(1+y^2)+(z)/(1+z^(2))=

xy+yz+zx=1rArr(x)/(1+x^(2))+(y)/(1+y^(2))+(z)/(1+z^(2))=

If xy+yz+zx=1 show that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx) = ?