Home
Class 11
MATHS
The coefficients of three consecutive te...

The coefficients of three consecutive terms of `(1+x)^(n+5)` are in the ratio 5:10:14. Then `n=` ___________.

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficients of three consecutive terms in the expansion of (1+x)^(n) are in the ratio 1:7:42. Find n.

The coefficients of three consecutive terms in the expansion of (1+a)^(n) are in the ratio 1:7:42. Find n.

If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion (1+x)^(n+5) are in the ratio 5:10:14 , then the largest coefficient in this expansion is :

If the coefficients of three consecutive terms in the expansion of (1+x)^(n) are in the ratio 1:7:42, then find the value of n.

If the coefficients of three consecutive terms in the expansion of (1 + x)^(n) are in the ratio 1 : 3 : 5, then show that n = 7.

The coefficient of three consecutive terms in the expansion of (1 + x)^(n ) are in the ratio 1 : 6 : 30. Find n.

The coefficients of three consecutive terms in the expansion of (1+x)^(n) are in the ratio 182:84:30. prove that n=18