Home
Class 10
MATHS
" (v) "p(x)=3x^(3)+x^(2)+2x+5,q(x)=1+2x+...

" (v) "p(x)=3x^(3)+x^(2)+2x+5,q(x)=1+2x+x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the polynomials p(x) = x^(3) - x^(2) - 2, q(x) = x^(2) - 3x + 1

The sum of the polynomials p(x) =x^(3) -x^(2) -2, q(x) =x^(2) -3x+ 1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)

The HCF of p(x) = 26(6x^(4) - x^(3) - 2x^(2)) and q(x) = 20 (2x^(6) + 3x^(5) + x^(4)) is

Let polynomial P(x)=x^(5)+2x^(4)-x^(3)+2x^(2)+3 ,is divided by polynomial D(x)=x^(2)-x+2 then we get remainder "R(x)" and quotient "Q(x)" such that P(x)=Q(x)*D(x)+R(x) then : (A) Q(x)=x^(3)+3x^(2)-4x, (B) Q(x)=x^(3)+3x^(2)-4 (C) R(x)=-4x+11, (D) R(x)=4x+11

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2