Home
Class 12
MATHS
If e^y+xy=e then the value of (d^2y)/(dx...

If `e^y+xy=e` then the value of `(d^2y)/(dx^2)` for `x=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)+xy=e^(2) then the value of (d^(2)y)/(dx^(2)) at x=0 is -

If x+y=e^(x-y) then the value of (d^(2)y)/(dx^(2)) is -

If y=e^(m sin^(-1)x) , then the value of [(d^(2)y)/(dx^(2))]_(x=0) is -

If y=e^( sinx ) the value of (dy)/(dx) at x=(pi)/(2) is , (a) 1 , (b) e , (c) 0 ,(d) not defined .

If e^(y)+xy=e," then: "[(d^(2)y)/(dx^(2))]_(x=0) is equal to

If e^(y)+xy=e," then: "[(d^(2)y)/(dx^(2))]_(x=0) is e^(lamda) then numerical quantity lamda should be equal to

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =