Home
Class 9
MATHS
" (c) "a^(3)x^(3)-3a^(2)bx^(2)+3ab^(2)x-...

" (c) "a^(3)x^(3)-3a^(2)bx^(2)+3ab^(2)x-b^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize: a^(3)x^(3)-3a^(2)bx^(2)+3ab^(2)x-b^(3)

Factorise a^3x^3-3a^2bx^2+3ab^2x-b^3

For any a,b,c,x,y>0 prove that :(2)/(3)tan^(-1)((3ab^(2)-a^(3))/(b^(3)-3a^(2)b))+(2)/(3)tan^(-1)((3xy^(2)-x^(3))/(y^(3)-3x^(2)y))=tan^(-1)(2 alpha beta)/(a^(2)-beta^(2)) where alpha=-ax+by,beta=bx+ay

Divide: 6x^(4)yz-3xy^(3)z+8x^(2)yz^(2)yz^(4) by 2xyz(2)/(3)a^(2)b^(2)c^(2)+(4)/(3)ab^(2)c^(3)-(1)/(5)ab^(3)c^(2)by(1)/(2)abc

If c^(2) != ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)+0 are equal show that a^(3)+b^(3)+c^(3)=3abc (or) a = 0.

If c^(2) ne ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0 are equal, then show that a^(3)+b^(3)+c^(3)=3abc" or "a=0

If x^(2)+px+1 is a factor of ax^(3)+bx+c then a a^(2)+c^(2)=-ab b) a^(2)+c^(2)ab c) a^(2)-c^(2)=ab d a^(2)-c^(2)=-ab

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

a^(2)b^(3)x2ab^(2) is equal to: 2a^(3)b^(4)(b)2a^(3)b^(5)(c)2ab (d) a^(3)b^(5)