Home
Class 10
MATHS
x^(2)+3x+1,3x^(4)+5x^(3)-7x^(2)+2x+2...

x^(2)+3x+1,3x^(4)+5x^(3)-7x^(2)+2x+2

Promotional Banner

Similar Questions

Explore conceptually related problems

The remainder when 2x^(5) - 3x^(4) + 5x^(3) - 7x^(2) + 3x - 4 is divided by x - 2 is

Find the quotient when p(x) = 3x^(4)+5x^(3) - 7x^(2) + 2x + 2 is divided by (x^(2)+3x + 1) .

If A, B, C are the remainders of x^(3) - 3x^(2) - x + 5, 3x^(4) - x^(3) + 2x^(2) - 2x - 4, 2x^(5) - 3x^(4) + 5x^(3) - 7x^(2) + 3x - 4 when divided by x + 1, x + 2, x - 2 respectively then the ascending order of A, B ,C is

The remainder we get when we divide 2x^(5) - 3x^(4) + 5x^(3) - 3x^(2) + 7x - 9 with x^(2) - x- 3 is

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Subtract: 7x^(4)-5x^(3)+4x^(2)+3x-3 from 6x^(4)-4x^(3)-8x^(2)-2x+7

By applying division algorithm prove that the polynomial g(x)=x^(2)+3x+1 is a factor of the polynomial f(x)=3x^(4)+5x^(3)-7x^(2)+2x+2

By applying division algorithm prove that the polynomial g(x)=x^(2)+3x+1 is a factor of the polynomial f(x)=3x^(4)+5x^(3)-7x^(2)+2x+2

The quotient and the remainder when 2x^(5)-3x^(4)+5x^(3)-3x^(2)+7x-9 is divided by x^(2)-x-3 are