Home
Class 11
MATHS
If x is positive, the first negative ter...

If x is positive, the first negative term in the expansion of `(1+ x)^(27//5)` is
a.`5^(th)` term
b. `8^(th)` term
c. `6^(th)` term
d. `7^(th)` term

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (r+1) th term is the first negative term in the expansion of (1+x)^(7/2), then find the value of r.

If r^(th) term is the middle term in the expansion of (x^(2)-(1)/(2x))^(20), then (r+3)^(th) term is

In the expansion of (2-3x^(3))^(20), if the ratio of 10^(th) term to 11^(th) term is (45)/(22) then x=

If the 6th,7th, 8th terms in the expansion of (x+y)^(n) be 112,7 and 1/4 find x,y and n.

If the coefficient of (r +1)^(th) term in the expansion of (1 +x)^(2n) be equal to that of (r + 3)^(th) term , then

If the coefficient of p^(th) term in the expansion of (1+x)^(n) is p and the coefficient of (p+1)^(th) term is q then n=

For expansion of (1 + x)^(n) , coefficient of 5th term is ___

When x=(5)/(2), numerically greatest term in the expansion of (3+2x)^(15) is (A)6th(B)8th (C) 10th(D)12th

If the coefficients of 5^(th), 6^(th) and 7^(th) terms in the expansion of (1+x)^(n) are in A.P. then n =