Home
Class 12
MATHS
" (iv) "tan^(-1)((3u^(2)x-x^(3))/((a^(3)...

" (iv) "tan^(-1)((3u^(2)x-x^(3))/((a^(3)-3ax^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]

Write the following in the simplest form: tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))

Differentiate the following functions with respect to x:tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))

Write the following function in the simplest form: tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),a>0;(-a)/(sqrt(3))<=x<=(a)/(sqrt(3))

Write the following function in the simplest form : tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),agt0,(-1)/(sqrt(3))ltxlta/(sqrt(3))

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

Express tan^(-1) ((3a^(2)x -x^(3))/( a^(3) -3ax^(2))) , where a gt 0, (-a)/(sqrt(3)) le x le (a)/(sqrt(3)) in the simplest form.

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .