Home
Class 11
MATHS
If n is a positive integer, prove that 1...

If `n` is a positive integer, prove that `1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)=(-1)^(n+1)(2n)!//2(n !)^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

If 'n' is a positive integer,then n.1+(n-1).2+(n-2).3+...+1.n=

If n is a positive integer show that (n+1)^(2)+(n+2)^(2)+....4n^(2)=(n)/(6)(2n+1)(7n+1)

(2^(n)+2^(n-1))/(2^(n+1)-2^(n))

For all positive integers n, show that ^2nC_(n)+^(2n)C_(n-1)=(1)/(2)(^(2n+2)C_(n+1))

For n in N, prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]