Home
Class 10
MATHS
" Prove that "cot theta-tan theta=(2cos^...

" Prove that "cot theta-tan theta=(2cos^(2)theta-1)/(sin theta cos theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following trigonometric identities: cot theta-tan theta=(2cos^(2)theta-1)/(sin theta cos theta)

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

Prove that (cos^(2) theta)/(1-tan theta)+(sin^(3) theta)/(sin theta - cos theta) =1 + sin theta cos theta .

Prove : (cos^2 theta)/(1-tan theta) + (sin^3 theta)/(sin theta-cos theta) = 1 + sin theta cos theta

Prove that (cos theta)/((1-tan theta))-(sin^(2)theta)/((cos theta-sin theta))=(cos theta+sin theta)

prove that (cos theta)/(1-tan theta)+(sin theta)/(1-cot theta)=cos theta+sin theta

Prove: (cos^2theta)/(1-tan theta) + (sin^3 theta)/(sin theta - cos theta ) = 1 + sin theta cos theta

Prove that (cos theta-sin theta+1)/(cos theta+sin theta-1)=csc theta+cot theta

Prove that (1+cos theta)/(sin theta)=cot[(theta)/(2)]