Home
Class 8
MATHS
[a^(mu)=b^(y)=c^(2)" and "abc=1],[" Proo...

[a^(mu)=b^(y)=c^(2)" and "abc=1],[" Proove that "u" uy "+yz+zu=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b^y=c^z" and "abc=1 , then prove that xy+yz+zx=0 .

If a^(x)=b^(y)=c^(z) and abc=1 then find the value of xy+yz+zx

If a^(x) =b^(y) =c^(z) and abc =1 then xy+yz+zx is equal to which of the following?

If a=b^(x),(:b=c^(y) and backslash c=a^(z), then the value of xyz is equal to a.0 b.1 c.-1 d.abc

If a=b^(x),b=c^(y) and c=a^(z) , then the value of xyz is equal to (a)-1 (b)0 (c)1 (d)abc

If a^(x)=b, b^(y)=c, c^(z)=a , then what is the value of (1)/((xy+yz+zx))((1)/(x)+(1)/(y)+(1)/(z)) ?

If y^(2)=ax^(2)+2bx+c and u_(n)= int (x^(n))/(y)dx , prove that (n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y and deduce that au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0) .

If y^(2)=ax^(2)+2bx+c , and u_(n)= int (x^(n))/(y)dx , prove that (n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y and deduce that au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0) .