Home
Class 11
MATHS
The value of sum(r=1)^(15)(r2^r)/((r+2)!...

The value of `sum_(r=1)^(15)(r2^r)/((r+2)!)` is `((17)!-2^16)/((17)!)` b. `((18)!-2^(17))/((18)!)` c. `((16)!-2^(15))/((16)!)` d. `((15)!-2^(14))/((15)!)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to

The value of sum_(r = 16)^(30)(r + 2)(r - 3) is equal to :

sum_(r=1)^(15)r(.^(15)C_(r))/(.^(15)C_(r-1))

The value of sum_(r=1)^(oo)cot^(-1)((r^(2))/(2)+(15)/(8)) is equal to

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

sum_(r=1)^(15)(r*2^(r))/((r+2)!) is equal to 1-(2^(m))/(n!) then m is divisible by

The value of log ((18)/(14))+log((35)/(48))-log((15)/(16))=