Home
Class 11
MATHS
Let n be a positive integer and k be a w...

Let `n` be a positive integer and `k` be a whole number, `klt=2ndot` Statement 1: The maximum value of `^2n C_ki s^(2n)C_ndot` Statement 2: `(^(2n)C_(k+1))/(^(2n)C_k)<<1,fork=0,1,2, ,n-1a n d(^(2n)C_k)/(^(2n)C_(k-1)>>1,fork=n+1,n+2, ,2n` .

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

If n is a positive integer and (1+i)^(2n)=k cos(n pi/2) , then the value of k is

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)

Statement-1 : The expression n!(100 - n)! is maximum when n = 50 . Statement-2 : .^(2n)C_(r) is maximum when r = n .

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)