Home
Class 8
MATHS
" Let "a=log(3)log(3)2" An integer "k" a...

" Let "a=log_(3)log_(3)2" An integer "k" antiofing "1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a=log_(3)log_(3)2. An integer k satisfying 1<2^((-k+3^(-a)))<2, must be less than .........

Let a=(log)_3(log)_3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, must be less than ..........

Let a=(log)_3(log)_3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, must be less than ..........

Let a=(log)_3(log)_3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, must be less than ..........

Let a=(log)_3(log)_3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, must be less than ..........

let log_(0.3)x=-log_(3)5, then x is:

If A=((log_(3)1-log_(3)4)(log_(3)9-log_(3)2))/((log_(3)1-log_(3)9)(log_(3)8-log_(3)4)) then find the value of 2(3^(A))

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

Show that log_(3)log_(2)log_(sqrt3)81 = 1