Home
Class 11
MATHS
lim(n rarr oo)(1^(3)+2^(3)+...+n^(3))/(n...

lim_(n rarr oo)(1^(3)+2^(3)+...+n^(3))/(n^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(n rarr oo)(1^(3)+2^(3)+n^(3))/((n-1)^(4))

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+...+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) ++ n ^ (3)) / ((n-1) ^ (4))

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))