Home
Class 14
MATHS
" If "I(n)=int(0)^((pi)/(4))tan^(n)xdx" ...

" If "I_(n)=int_(0)^((pi)/(4))tan^(n)xdx" then what is "I_(n)+I_(n-2)" equal to? "

Promotional Banner

Similar Questions

Explore conceptually related problems

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

If I_(n)=int_(0)^((pi)/(4))tan^(n)theta then I_(8)+I_(6) equals

If I_(n) int_(0)^(4) x dx then what is I_(n) + I_(n-2) equal to ?

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^(pi//4)tan^(n)xdx , then (1)/(I_(3)+I_(5)) is

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is