Home
Class 12
MATHS
int(0)^( pi/2)log(sin x)dx=...

int_(0)^( pi/2)log(sin x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

Prove that: int_(0)^( pi/2)log(sin^(3)x cos^(4)x)backslash dx=-(7 pi)/(2)log2

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=