Home
Class 11
MATHS
cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=...

cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Show that cos^(2) A + cos^(2)B - 2 cos A cos B cos (A + B) = sin^(2) (A + B)

cos^(2) (A-B)+cos^(2)B-2cos(A-B) cos A cos B =

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

Prove (i)cos(A+B)+cos(A-B)=2cos A cos B(ii)cos(A-B)-cos(A+B)=2sin A sin B