Home
Class 11
MATHS
The value of ("^n C0)/n+("^nC1)/(n+1)+("...

The value of `("^n C_0)/n`+`("^nC_1)/(n+1)`+`("^nC_2)/(n+2)`+....+`("^nC_ n)/(2n)` is equal to a.`int_0^1x^(n-1)(1-x)^n dx` b. `int_1^2x^n(x-1)^(n-1)dx` c. `int_1^2x^(n-1)(1+x)^n dx` d. `int_0^1(1-x)^(n-1)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (nC_(0))/(n)+(nC_(1))/(n+1)+(nC_(2))/(n+2)+......+(nC_(n))/(2n) is equal to

int(2x^(n-1))/(x^(n)+3)dx

Evaluate: int_0^1x(1-x)^n dx

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

int x ^ (2n-1) cos x ^ (n) dx

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

What is int_0^1 x(1-x)^n dx equal to