Home
Class 11
MATHS
The value of lim(n->oo)sum(r=0)^(n)(s...

The value of `lim_(n->oo)sum_(r=0)^(n)``(sum_(t=0)^(r-1)1/(5^n)*"^n C_r``*``"^r C_t .(3^t))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)sum_(r=1)^(n)(sum_(t=0)^(r-1)(1)/(5^(n))*C(n,r)C(r,t)3^(t)) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(n rarr oo)[{4sum_(r=0)^(n)(r+1)(r+2)(r+3)}^((1)/(4))-n] is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

The valur of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals