Home
Class 12
MATHS
If xn+iyn=(1+i)^n(n>0) and n is an integ...

If `x_n+iy_n=(1+i)^n(n>0)` and n is an integer then the value of `x_(n-1)y_n-x_ny_(n-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(n)+iy_(n)=(1+i)^(n)(n>0) and n is an integer then the value of x_(n-1)y_(n)-x_(n)y_(n-1)=

If (sqrt(3)+i)^(n)=x_(n)+iy_(n) and n is a positive integer then the value of x_(n-1)y_(n)-x_(n)y_(n-1)=

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

If x_(n) + iy_(n) = (1 + i)^(n) then x_(n - 1) y_(n) - x_(n) y_(n- 1) =

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If 4^(x)*n^(2)=4^(x+1)*n and x and n are both positive integers, what is the value of n?