Home
Class 11
MATHS
Given that C1+2C2x+3C3x^2++2nC(2n)x^(2n-...

Given that `C_1+2C_2x+3C_3x^2++2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1), w h e r eC_r=(2n)!//[r !(2n-r)!]; r=0,1,2, ,2n ,` then prove that `C1 2-2C2 2+3C3 2--2n C2n2=(-1)^nn C_ndot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Prove that C_(0)-2^(2)C_(1)+3^(2)C_(2)-4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)xx C_(n)=0 where C_(r)=^(n)C_(r)

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

c_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+....+nC_(n)^(2)=((2n-1)!)/ ([(n-1)!^(2)))

If n>2, then prove that C_(1)(a-1)-C_(2)xx(a-2)+...+(-1)^(n-1)C_(n)(a-n)=a, where C_(r)=^(n)C_(r)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(0) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .