Home
Class 10
MATHS
sec^(2)12^0 - 1/tan^(2)78^0...

`sec^(2)12^0 - 1/tan^(2)78^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2)12^(@)-(1)/(tan^(2)78^(@))=1 .

The value of sec^2 12^@-frac(1)(tan^2 78^@ is (A) 0 (B) 1 (C) 2 (D) 3

Prove that sec^(2)theta-1-tan^(2)theta=0

Given f(0)=0;f'(0)=0 and f''(x)=sec^(2)x+sec^(2)x tan^(2)x+ then f(x)=

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

find the general solution of sec^(2)x tan y dx + sec^(2) y tan x dy = 0