Home
Class 11
MATHS
lim(h rarr0)(log(10)(1+h))/(h)=...

lim_(h rarr0)(log_(10)(1+h))/(h)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(log_(e)(1+x))/(x)

6. lim_(h rarr0)(log(e^(3)+h)-3)/(h)

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

lim_(h rarr0)(log(x+h)-log x)/(h)

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(h rarr0)(log(1+2h)-2log(1+h))/(h^(2))=

Prove that: lim_(h rarr 0) (log(x+h)-logx)/(h)=(1)/(x)

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

lim_(X rarr0)log|(log(1+x))/(x)|