Home
Class 12
MATHS
y=((sinx+x^2)/(cot2x))...

`y=((sinx+x^2)/(cot2x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when y=(sin x+x^(2))/(cot2x)

Find (dy)/(dx) , when : y=((sinx+x^(2)))/(cot 2x)

For x,yepsilonR with 0 lt x lt (pi)/2 such that ((sinx)^(2y))/((cosx)^((y^(2))/2))+((cosx)^(2y))/((sinx)^((y^(2))/2))=sin2x , then y is ________.

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

Find the value of (sinx+cosecx)^(2)+(cosx+secx)^(2)-(tan^(2)x+cot^(2)x) .

prove that: (sin2x-sin2y)/(cos2y-cos2x)=cot(x+y)

If y=(sinx)^((sinx)^((sinx)^(....oo))) show that, (dy)/(dx)=(y^(2)cot x)/(1-ylog(sinx))

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to