Home
Class 12
MATHS
If f(x)=int((2sinx-sin2x)/(x^3)dx); x!=0...

If `f(x)=int((2sinx-sin2x)/(x^3)dx); x!=0` then `lim_(x->0) f^'(x)` is: (A) 0 (B) `oo` (C) -1 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int(sinx-sin2x)/(x^(3)) dx, where xne0 , then Limit_(xto0) f^(')(x) has the value

If f(x)= sqrt((x-sin x)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) is equal to a)1 b)2 c) (1)/(2) d)0

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =

f(x) is the integral of (2sin x-sin2x)/(x^(3)),x!=0. Find lim_(x rarr0)f'(x)[wheref'(x)=(df)/(dx)]

[ If f(x)=|x|+|x-1|, then int_(0)^(2)f(x)dx equals- [ (A) 3, (B) 2, (C) 0, (D) -1]]