Home
Class 12
MATHS
Given log2(a) + log2(2) + log3(1 + b^2)=...

Given `log_2(a) + log_2(2) + log_3(1 + b^2)=2 (a>1. b in R),c=log_10(2^log_2(3)......log_99(100)),d=log_10(2^log_2(3^log_3(4........log_99(100)` Then find the value of `(a+b+c+d)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_(2)*log_(3)dots......log_(100)100^(99)

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

If A=((log_(3)1-log_(3)4)(log_(3)9-log_(3)2))/((log_(3)1-log_(3)9)(log_(3)8-log_(3)4)) then find the value of 2(3^(A))

The number N=2^(log_(2)3log_(3)4*log_(4)5.......log_(99)100) simplifies to

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(a)b=2,log_(b)c=2, and log_(3)c=3+log_(3)a then the value of c/(ab) is..........

log(1/2)+log (2/3)+log(3/4) +….+ log(99/100) = ______

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.