Home
Class 11
MATHS
If the sum sqrt(1+1/(1^2)+1/(2^2))+sqrt(...

If the sum `sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4^2))+..........+sqrt(1+1/(1999^2)+1/(2000^2))` is equal to `n-1/n` where n`in`N. Find n

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4^2))++sqrt(1+1/((1999)^2)+1/(2000)^2)+=1/x , Find x

If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4^2))++sqrt(1+1/((1999)^2)+(2000)^2)=x-1/x

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+...+n sqrt(n^(2)+n^(2))) is equal to

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

lim_(nrarroo) [(1)/(n)+(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+...+(sqrt(n^(2)-(n-1)^(2)))/(n^(2))]

If a_(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value of sum_(n=1)^(20) (1)/(a^(n)) is

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals