Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If [.] denotes the greatest integer function then the domain of the real-valued function `log_([x+1/2])|x^2-x-2|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is

If [1 denotes the greatest integer and {} denotes the fractional part,then the domain of the real valued function f(x)=(f(x))/(sqrt(1000x^(2)-999(x)^(3)-990(x)^(2)-50x+60)) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [x] denotes the greatest integer lt x then the domain of the function function f(x) =sqrt((4-x^2)/([x]+2)) is

If [.] denotes the greatest integer function and {.} denotes the fractional part,then the domain of the function f(x)=sqrt((x-1)/(x-{x}))+ln(3-[x+[2x]]) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).