Home
Class 11
MATHS
यदि वृत्त x^(2)+y^(2)-2gx+2fy=0" और "x^(...

यदि वृत्त `x^(2)+y^(2)-2gx+2fy=0" और "x^(2)+y^(2)+2g'x+2f'y=0` एक-दूसरे को स्पर्श करे, तो सिद्ध कीजिए की `f'g=fg'`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the two circles x^(2) + y^(2) + 2gx + 2fy = 0 and x^(2) + y^(2) + 2g'x+ 2f'y = 0 will touch each other if f'g = g'f.

Circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch externally, if quad

If the circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other, then

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then f'g =fg'.

If the two circles x^(2)+y^(2)+2gz+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then show that f'g=fg'