Home
Class 12
MATHS
int(0)^( pi)(sum(r=0)^(3)a(r)cos^(3-r)x ...

int_(0)^( pi)(sum_(r=0)^(3)a_(r)cos^(3-r)x sin^(r)x)dx" depends "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi)(Sigma_(r=0)^(3)a_(r)cos^(3-r)x sin^(r)x)dx depends upon

The value of int_(0)^(pi)(Sigma_(r=0)^(3)a_(r)cos^(3-r)x sin^(r)x)dx depends upon

[ The value of int_(-pi)^( pi)sum_(r=0)^(999)cos rx(1+sum_(r=1)^(999)sin rx)dx, is [ (1) 2 pi, (2) 999 pi, (3) 0]]

[ The value of int_(-pi)^( pi)sum_(r=0)^(999)cos rx(1+sum_(r=1)^(999)sin rx) dx, is [ (1) 2 pi, (2) 999 pi, (3) 0]]

The value of int_(-pi)^( pi)sum_(r=0)^(999)cos rx(1+sum_(r=1)^(999)sin rx) dx, is

int_(-pi)^( pi)|x sin[x^(2)-pi}|dx=sum_(r=0)^(n)a_(r)sin r where Il denote the greatest integer function and a_(r),r=0,1,2,...n are real constants then n is equal to

int(sum_(r)=0^(oo)(x^(r)3^(r))/(r!))dx

The value of (sum_(r=0)^(n)nC_(r)sin2 pi x)/(sum_(r=0)^(n)nC_(r)cos2 pi x) is equal to

int (sum_(r = 0)^(infty) (x^(r) 3^(r))/(r!) ) dx =