Home
Class 12
MATHS
Lt(n rarr oo)((n!)/(n^(n)))^((1)/(n))=...

Lt_(n rarr oo)((n!)/(n^(n)))^((1)/(n))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

{:(" "Lt),(n rarr oo):}(((2n)!)/(n!n^(n)))^(1/n)=

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_(n rarr oo)(((n)/(n))^(n)+((n-1)/(n))^(n)+......+((1)/(n))^(n)) equals

Lt_(n rarr oo)[(1+(1)/(n^(2)))^((2)/(n^(2)))(1+(2^(2))/(n^(2)))^((4)/(n^(2)))(1+(3^(2))/(n^(2)))^((6)/(n^(2))).....(1+(n^(2))/(n^(2)))^((2n)/(n^(2)))]

Lt_(n rarr oo)(cos(x)/(n))^(n)

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)