Home
Class 12
MATHS
" If "y=x log x," then find "(d^(2)y)/(d...

" If "y=x log x," then find "(d^(2)y)/(dx^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= log x , then find (d^2y) / (dx^2)

If y=x log x ,then (d^(2)y)/(dx^(2))=

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=log(x-2), xgt2, find (d^(2)y)/(dx^(2) .

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =