Home
Class 9
MATHS
a=(4)/(2+sqrt(3)+sqrt(7))...

a=(4)/(2+sqrt(3)+sqrt(7))

Promotional Banner

Similar Questions

Explore conceptually related problems

rationalise (4)/(2+sqrt(3)+sqrt(7))

if (4)/(2+sqrt(3)+sqrt(7))=sqrt(a)+sqrt(b)-sqrt(c) then :

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)+sqrt(6)-sqrt(13)) (ii) (3)/(sqrt(3)+sqrt(5) -1) (iii) (4)/(2-sqrt(3)+sqrt(7))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))( ii) (5+2sqrt(3))/(7+4sqrt(3))

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

Simplify the following expressions: (i)\ (4+\ sqrt(7))\ (3+sqrt(2)) (ii)\ (3+sqrt(3))\ (5-sqrt(2)) (iii)\ (sqrt(5)-2)\ (sqrt(3)-sqrt(5))