Home
Class 12
MATHS
" Prove that ":int(0)^( pi/2)(1)/(1+tan^...

" Prove that ":int_(0)^( pi/2)(1)/(1+tan^(3)x)dx=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) (1)/(1+tan^(3)x)=(pi)/(4)

Prove that: int_(0)^(pi//2) (1)/(1+tan^(3)x)=(pi)/(4)

Prove that: int_(0)^(pi//2) (1)/(1+tan^(3)x)=(pi)/(4)

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

By using the properties of definte, prove that int_(0)^(pi//2)(dx)/(1+tan^(3)x)dx=(pi)/4

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

int_(0)^((pi)/(2))(1)/(1+tan x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx