Home
Class 12
MATHS
lim(x->1) (x-1)/sin(x-1)...

`lim_(x->1) (x-1)/sin(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(x-1)/(sin(x-1))

lim_(x rarr1)(x-1)/(sin(x-1))

lim_(x rarr1)[(x-1)/(sin(x-1))+cos(x-1)]

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largest value of non negative integer a for which lim_(x->1){(-a x+sin(x-1)+a]/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

Which of the following limits does not exist ?(a) lim_(x->oo) cosec^(-1) (x/(x+7) (B) lim_(x->1) sec^(-1) (sin^(-1)x) (C) lim_(x->0^+) x^(1/x) (D) lim_(x->0) (tan(pi/8+x))^(cotx)

Prove : underset(xrarr0)"lim"(tan^(-1)x-x)/(sin^(-1)x)=1