Home
Class 11
MATHS
" 5.(i) "tan^(-1)x+tan^(-1)y=tan^(-1)(x+...

" 5.(i) "tan^(-1)x+tan^(-1)y=tan^(-1)(x+y)/(1-xy),xy<1

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

tan^(-1)((x+y)/(1-xy)),xy<1 =

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

If x,y are real numbers such that xy<1 then tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

The result tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) is true when value of xy is _____

Write down the conditioni under which tan^-1 x + tan^-1 y = tan^-1 (x+y)/(1-xy), x, y in r .